In the previous section, we learnt the following formulae:

  • Sin(A + B) = SinA*CosB + CosA*SinB
  • Sin(A-B) = SinA*CosB – CosA*SinB
  • Cos(A+B) = CosACosB – SinA*SinB
  • Cos(A-B) = CosACosB + SinA*SinB

In this section, we will learn the formula for Sin2A, Cos2A, Sin(A/2), Cos(A/2) also called multiple and submultiple angles.

Multiple Angles

Deriving Sin2A

we know that
Sin(A+B) = SinA*CosB + CosA*SinB

If in this formula, we have A = B, Sin(A+B) = sin(A + A) = Sin2A

Sin(A+A) = SinA*CosA + CosA*SinA
or,

Sin2A = 2sinA*CosA

Deriving Cos2A

we know that
Cos(A+B) = CosA*CosB – SinA*SinB

If in this formula, we have A = B, Cos(A+B) = Cos(A + A) = Cos2A

Cos(A+A) = CosA*CosA + SinA*SinA
or,

Cos2A = Cos2A – Sin2A

We also know that
sin2A + cos2A = 1
or Cos2A = 1- Sin2A

so, we also have

Cos2A = 2cos2A – 1 = 1 – 2sin2A

Now, let us check formula for 3A

Sin3A can be written as sin(2A + A)

Sin(2A + A) = sin2A*CosA + Cos2A*SinA

using the formula for Cos2A and Sin2A, we get

Sin(2A + A) = 2SinACosA*CosA + (Cos2A – Sin2A)SinA
or, Sin3A = 2SinA*Cos2A + Cos2A*SinA – Sin3A
or, Sin3A = 3SinA*Cos2A – Sin3A
or, Sin3A = 3SinA(1-sin2A) – Sin3A
or, Sin3A = 3SinA – 3sin3A) – Sin3A
or,

Sin3A = 3SinA – 4sin3A

Use the same approach to find

Cos3A = 4cos3A – 3cosA

Sine and Cosine of Submultiple angles

We know:

cos2A = 2cos2A -1 or 1-2sin2A

If instead of A, we take x/2, 2A will become x and we will have

Cosx = cos(2(x/2)) = 2cos2(x/2) – 1

or, 2cos2(x/2) = Cosx + 1

or, cos2(x/2) = Cosx + 12

or, cos(x2) = √(Cosx+1)2

Replacing x by A, we have
Cos(A2) = √(CosA+1)⁄√2

We also have

CosA = 1-2Sin2A2

2Sin2A2 = 1-CosA

Sin2(A2) = (1 – Cosx)2

Sin(A2) = √ (1 – Cosx)⁄√2

So, for Submultiple, we have the formulae as:

Cos(A2) = √(CosA+1)⁄√2
Sin(A2) = √ (1 – Cosx)⁄√2

Select your currency
USD United States (US) dollar